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Abstract. Dynamic properties of antiferromagnets at zero temperature are explored. Going beyond RPA
a nonlinear set of coupled equations for dynamic susceptibilities and correlation functions is derived.
New results are presented for nondiagonal elements of the dynamic susceptibility tensor, longitudinal
fluctuations and their influence on transverse fluctuations.
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1 Introduction

This paper deals with a very old subject: fluctuations –
or equivalently the excitation spectrum – of antiferromag-
nets. Standard spin-wave theory for antiferromagnets is
textbook knowledge [1]. Dynamics of antiferromagnets at
low temperature, in particular thermal fluctuations and
their influence on spin wave damping and hydrodynam-
ics, was studied in a classical paper by Harris, Kumar,
Halperin and Hohenberg [2]. The advent of high Tc su-
perconductivity triggered an extensive literature on quasi
2-dimensional antiferromagnets [2,3].

Nevertheless the effects of pure quantum fluctuations
(at temperature T = 0), particularly important for small
spin, on the excitation spectrum are not well studied,
even in 3 dimensions. Very little is known, for example,
about longitudinal quantum fluctuations. From general
sum rules it follows, that the total weight of longitudinal
quantum fluctuation is substantial [4], (for S = 1

2 a sizable
fraction of the transverse fluctuations), but their spectral
distribution is largely unknown. Braune and Maleev [5]
partly addressed this problem. A further subject – unex-
plored up to now – concerns the off-diagonal elements of
the dynamic susceptibility tensor.

In the following we develop a selfconsistent scheme to
describe longitudinal and transverse quantum fluctuations
and their mutual influence, including all elements of the
dynamic susceptibility tensor, diagonal and off-diagonal.

2 Preliminary remarks

The subject of discussion will be dynamical properties of
antiferromagnets at zero temperature. To be specific we
use the Heisenberg model

H = −
∑

JABSA · SB (1)

a e-mail: capell@physik.rwth-aachen.de

SA, SB are spin operators, A and B lattice indices. The
crystal lattice forms a simple “a−b structure”, giving rise
to a simple antiferromagnetic ground state, the modula-
tion being described by a wavevector Q. The ordered mo-
ment defines the z-direction

〈SA〉 = d eiQ·RAez (2)

ez is the unit vector into the z-direction; RA is a lattice
vector, exp{iQRA} = ±1; 2 Q equals a reciprocal lattice
vector; the brackets 〈 〉 correspond to the (symmetry
broken) ground state expectation value.

We will calculate the dynamic susceptibility tensor

χνµAB(t) ≡ −iΘ(t)〈[SνA(t), SµB(0)]〉, (3)

ν, µ are Cartesian indices (x, y, z).
Fourier transforms are defined as

χνµkk′(ω) =
1
N

∑
A,B

∫
dteiωte−ikRAeik′RBχνµAB(t) (4)

χνµAB(t) =
1
N

∑
kk′

∫
dω
2π

e−iωte+ikRAe−ik′RBχνµk,k′(ω). (5)

Due to the symmetry of the problem the components

χxx = χyy ≡ χ+, (6)

χxy = −χyx ≡ iχ−, (7)

χzz ≡ χ(3) (8)

will be finite, while the other components of the suscepti-
bility tensor vanish:

χxz = χzx = χyz = χzy = 0. (9)
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It is convenient to define 3 by 3 matrices,

P1 =
1
2

 1 i 0
−i 1 0
0 0 0

 , (10)

P2 =
1
2

1 −i 0
i 1 0
0 0 0

 , (11)

P3 =

0 0 0
0 0 0
0 0 1

 . (12)

The Pi have projector properties:

PiPj = δijPi, (13)
3∑
i=1

Pi = 1 (the 3× 3 unit matrix). (14)

With their aid we decompose

χ = P1χ
(1) + P2χ

(2) + P3χ
(3)

= (P1 + P2)χ+ + (P1 − P2)χ− + P3χ
(3); (15)

χ± =
1
2

(χ(1) ± χ(2)). (16)

For technical reasons we introduce the “vector” L, whose
components Lx, Ly, Lz are 3 by 3 matrices:

Lx =

0 0 0
0 0 1
0 −1 0

 ;Ly =

0 0 −1
0 0 0
1 0 0

 ;Lz =

 0 1 0
−1 0 0
0 0 0

 .

(17)

The commutation relations take the form:

[SA,SB] = iSA · LδAB . (18)

We use units such that ~ = 1.

3 Derivation of the selfconsistency equations

In tensor form the equation of motion for the susceptibility

χAB(t) = −iΘ(t)〈[SA(t),SB(0)]〉 (19)

becomes

d
dt
χAB(t) = −iδ(t)〈[SA,SB]〉 − iΘ(t)〈

[
i[H,SA(t)],SB

]
〉

= −iδ(t)〈[SA,SB]〉
− iΘ(t)

∑
C

2JCA〈[SC · (SAL),SB(−t)]〉.

(20)

Operators S not containing an explicit time argument are
to be taken at t = 0.

We define

KAB ≡ 〈[SA,SB]〉 = i〈SAL〉δAB (21)

and

χ̃
(3)
CAB(t) ≡ −iΘ(t)〈[SC · (SAL),SB(−t)]〉. (22)

Equation (20) now takes the form:

d
dt
χAB(t) = −iδ(t)KAB + 2

∑
C

JCAχ̃
(3)
CAB(t). (23)

The equation of motion for χ̃(3) reads:

d
dt
χ̃

(3)
CAB(t) = −iδ(t)RCAB + 2

∑
D

JDBχ
(4)
CADB(t), (24)

where we introduced

RCAB ≡ 〈[SC · (SAL),SB ]〉, (25)

and

χ
(4)
CADB(t) ≡ iΘ(t)〈[SC(t) · (SA(t)L),SD · (SBL)]〉. (26)

Fourier transformation with respect to time yields:

ωχAB(ω) = KAB + i2
∑
C

JCAχ̃
(3)
CAB(ω), (27)

ωχ̃
(3)
CAB = RCAB + i2

∑
D

JDBχ
(4)
CADB(ω). (28)

Combining these two equations leads to

ω2χAB(ω) = ωKAB + i2
∑
C

JCARCAB

− 4
∑
CD

JCAJDBχ
(4)
CADB(ω). (29)

The selfconsistency equations for χ are obtained by fac-
torizing χ(4) (Eq. 26) into products of spin-spin correla-
tion functions and components of the susceptibility tensor
itself.

Explicitly the (ν, µ) component of the susceptibility
tensor χ(4)

CADB is defined as

χ(4)
νµ = iθ(t)

∑
ii′
jj′

〈[SiC(t)SjA(t)Ljiν , S
i′

DS
j′

BL
j′

i′µ]〉. (30)

If we factorize we obtain (we use Ljiν = −Lijν , etc.):

χ(4)
νµ (t) = −

∑
jj′

{
〈(SC(t)L)jν(SDL)j′µ〉χjj

′

AB(t)

− 〈(SC(t)L)jν(SBL)j′µ〉χjj
′

AD(t)

− 〈(SDL)j′µ(SA(t)L)jν 〉χjj
′

CB(t)

+ 〈(SBL)j′µ(SA(t)L)jν〉χjj
′

CD(t)
}
. (31)
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The correlation functions appearing as factors of the sus-
ceptibilities are connected to these via the fluctuation dis-
sipation theorem. We define:

Γ νµAB(t) ≡ 〈SνA(t)SµB〉, (32)

and its Fourier transform

Γ νµAB(ω) =
∫

dteiωtΓ νµAB(t). (33)

Furthermore:

χ′′νµAB (ω) =
1
2i
(
χνµAB(ω)− χµνBA(−ω)

)
. (34)

Then the fluctuation dissipation theorem states:

2
1− e−βω

χ′′νµAB (ω) = −Γ νµAB(ω). (35)

This, together with equations (21, 25, 26, 29, 31) consti-
tutes a set of selfconsistency equations for the dynamic
susceptibility tensor and the corresponding spin-spin cor-
relation functions. Equation (31) constitutes an approxi-
mation, its validity will be discussed later. A remark con-
cerning previous derivations of selfconsistency equations
for spin correlation functions: equation of motion tech-
niques and decouplings of higher order functions to obtain
a closed set of course exist in the literature [7]. Previous
decoupling schemes, however, did not allow for a fully self-
consistent treatment of frequency dependencies including
longitudinal fluctuations and off-diagonal elements of the
susceptibility tensor.

4 RPA-approximation

Although the RPA is not adequate to describe quantum
fluctuations, we nevertheless present it as a starting point.
The purpose is twofold: we make contact to previous dis-
cussions (with partly well known results), and we demon-
strate the inherent deficiencies of RPA. In the following
Section 5 we will go beyond RPA to remedy these defi-
ciencies.

The RPA is obtained from the selfconsistency equa-
tions by an additional drastic approximation: of the cor-
relation functions appearing in equation (31) only the time
independent part (ω = 0) is retained, all time depen-
dent contributions (ω 6= 0) to the correlation functions
are neglected. (A remark about the meaning of the word
“static”. Traditionally the “static susceptibility” means
the ω = 0 susceptibility, the “static correlation function”
means the equal time (t = 0) function, i.e. the integral
over all frequencies. Unfortunately this has become com-
mon use, we will try to avoid confusion by explicitly men-
tioning t = 0 or ω = 0 whenever necessary.)

We have chosen the ordered moment to point in the
z-direction (Eq. (2)), therefore the factorization of χ(4)

(Eq. (31)) will retain only the ω = 0 part of the Sz − Sz

correlation function: RPA is obtained from equation (31)
by substituting:

〈SjA(t)Sj
′

B 〉 → δj,zδj′,zd
2eiQ(RA−RB). (36)

The spin-space matrix multiplications on the right hand
side of equation (31) will then reduce to∑

jj′

LzjνL
z
j′µχ

jj′ = −(LzχLz)νµ

=
(

(P1 + P2)χ
)
νµ

(37)

(above we used Lz = −i(P1 − P2) and χ = P1χ
(1) +

P2χ
(2) + P3χ

(3)).
In RPA the quantity R defined in equation (25) takes

the form (again only the ω = 0 part of the Sz − Sz corre-
lation function is retained):

2i
∑
C

JCARCAB →

− 2(P1 + P2)
∑
C

(δCB − δAB)d2eiQ(RC−RB)JCA. (38)

The quantity K defined in equation (21) does not require
an approximation. According to equation (2) we have

KAB = (P1 − P2)δABdeiQRA . (39)

The RPA-solution of equation (29) can now be obtained
by Fourier transformation with respect to the lattice
indices.

In general:

Kkk′ = (P1 − P2)dδk,k′−Q. (40)

We use the notation

(JR)AB ≡
∑
C

JCARCAB. (41)

RPA according to equation (38) leads to

2i(JR)k,k′ = (P1 + P2)2d2(JQ − Jk−Q) δk,k′ . (42)

For the last term on the right hand side of equation (29)
we use the notation

(JJχ(4))AB ≡
∑
CD

JCAJDBχ
(4)
CADB. (43)

Substituting the RPA approximation of equation (36) into
the factorization equation (31) will enable us to carry out
the Fourier transformation with respect to the lattice in-
dices. The Fourier transform of χ itself will appear in the
RPA form of χ(4).

We define:

χk,k′ ≡ χ(0)
k δk,k′ + χ

(Q)
k δk,k′−Q. (44)
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In RPA we obtain:

− 4(JJχ(4))k,k′ = 4(P1 + P2)d2
{
δkk′χ

(0)
k+Q(JQ − Jk−Q)2

+ δk,k′−Qχ
(Q)
k+Q(JQ − Jk−Q)(JQ − Jk)

}
. (45)

Collecting the various contributions equation (29)
becomes

ω2χk,k′(ω) = (P1 − P2)dωδk,k′−Q

+ (P1 + P2)2d2(JQ − Jk−Q)δk,k′ (46)

+ 4(P1 + P2)d2
{
χ

(0)
k+Q(JQ − Jk−Q)2δk,k′

+ χ
(Q)
k+Q(JQ − Jk−Q)(JQ − Jk)δk,k′−Q

}
.

(47)

From χ = P1χ
(1) +P2χ

(2) +P3χ
(3) we immediately obtain

ω2χ(3) = ω2χzz = 0. (48)

In RPA the longitudinal dynamic susceptibility vanishes
identically! This actually is one of the essential deficiencies
of RPA, we will have to correct this deficiency to obtain an
internally consistent picture (this will be done in Sect. 5).

The RPA results for the susceptibilities in the plane
perpendicular to the ordered moment are obtained from
equation (29) by solving for χ± = 1

2 (χ(1) ± χ(2)). We ob-
tain two sets of 2 coupled equations by setting k′ = k and
k′ = k + Q. The solutions are straightforward: the RPA
result for the full susceptibility tensor is:

χk,k′(ω) = δk,k′(P1 + P2)
dEk+Q

ω2 − ε2k
+ δk,k′−Q(P1 − P2)

ωd

ω2 − ε2k

= δk,k′
dEk+Q

ω2 − ε2k

1 0 0
0 1 0
0 0 0


+ δk,k′−Q

dω

ω2 − ε2k

 0 i 0
−i 0 0
0 0 0

 . (49)

Here the following definitions were used:

Ek = 2d(JQ − Jk); (50)

ε2k = EkEk+Q = ε2k+Q. (51)

A few remarks: the diagonal elements of the tensor are
standard and well-known; they are diagonal in wavevector;
the response in the direction of the applied field (perpen-
dicular to the ordered moment) is at the same wavevec-
tor as that of the applied field. The off-diagonal elements
are not so well-known: E.g. an applied field of wave vec-
tor k in the x-direction also generates a response in the
y-direction of wavevector k + Q. This describes a preces-
sion of the ordered moment around the applied field. To
the authors knowledge these off-diagonal elements of the

dynamic susceptibility had not been published before [7].
Real and imaginary parts of the dynamic susceptibility
are obtained in the usual way by taking ω → ω + iη (η
being infinitesimally small and positive for real ω). The
RPA results from equation (49) are:

χ′′xxk,k′ = χ′′yyk,k′

= −π
2
d

√
Ek+Q

Ek
(δ(ω − εk)− δ(ω + εk)) δk,k′ ; (52)

χ′′xyk,k′ = −χ′′yxk,k′ = −i
π

2
d(δ(ω − εk) + δ(ω + εk)) δk,k′−Q;

(53)

RPA gives χ′′ as sharp δ-functions. For fixed k, χ′′ is zero
everywhere except for ωk = ±εk, corresponding to an in-
finitely sharp spin wave excitation. The prefactors of the
δ-functions (usually called “spin wave form factors”) de-
scribe the coupling strength of the applied field to these
excitations.

For the diagonal elements this strength vanishes as |k|
for |k| going to zero and diverges as k approaches Q as 1

|κ| ,
where κ = k−Q. For the offdiagonal elements RPA gives
the coupling strength as k-independent. For the latter iχ′′
is real, the factor i signaling a phase shift by π

2 .

5 Beyond RPA

RPA as derived in the previous chapter is internally in-
consistent. The sum rule∑

ν

∫
dω
2π
Γ ννAA(ω) =

∑
ν

〈SνASνA〉 = S(S + 1), (54)

and the fluctuation dissipation theorem (Eq. (35)) cannot
be reconciled with χzz = 0 for finite ω (Eq. (48)). The
ordered moment d for the antiferromagnetic ground state
is necessarily smaller than S and this unambiguously re-
quires a finite longitudinal susceptibility [4]. This is most
easily seen for S = 1

2 , where 3 independent sum rules exist
for the 3 components due to 〈SνASνA〉 = 1

4 .
The contribution of Γ zz(ω) to the sum rule coming

from ω = 0 (describing the ordered moment) is d2, neces-
sarily smaller than ( 1

2 )2, therefore there must be a finite
ω contribution to satisfy the sum rule.

The necessary existence of longitudinal quantum fluc-
tuations will also have a strong influence on the spectral
functions for the transverse susceptibilities: the single δ-
functions obtained in equations (52, 53) are an artefact of
RPA.

To correct these deficiencies, we go back to the set of
selfconsistency equations derived in Section 2. In a first
step we do not attempt full selfconsistency, but we use
a type of perturbation theory beyond RPA: for the time
dependent correlation functions in equation (31) and the
equal time correlation functions in equation (25) we use
RPA results. With their aid we then obtain the dynamic
susceptibilities from equation (29).
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The quantity R (Eq. (25)) contains equal time corre-
lation functions of the type

〈SνAS
µ
B〉 ≡ γ

νµ
AB = Γ νµAB(t = 0). (55)

To obtain RPA results the approximation equation (42)
only retained the Sz − Sz correlation function (further-
more its ω = 0 part only). However, the RPA results gen-
erate finite γxx = γyy as well as γxy = −γyx through
application of the fluctuation dissipation theorem. These
contributions originate from finite frequencies.

General symmetry requires:

γxx = γyy; γxy = −γyx; γxz = γyz = γzx = γzy = 0.
(56)

This leads to

(JR)xxAB = −i
∑
C

JCA(δAB − δCB)(γxxCA + γzzCA)

≡ (JR)+
AB; (57)

(JR)xyAB = i
∑
C

JCA(δAB + δCB)γxyCA ≡ i(JR)−AB ; (58)

(JR)zzAB = −i
∑
C

JCA(δAB − δCB) 2γxxCA ≡ (JR)(3)
AB .

(59)

In compact form:

(JR) = (P1 + P2)(JR)+ + (P1 − P2)(JR)− + P3(JR)(3).
(60)

Concerning the decomposition of χ(4) (Eq. (31)) we use
the symmetry conditions:

Γ xxAB(t) = 〈SxA(t)SxB〉 = Γ yyAB(t) ≡ Γ+
AB(t); (61)

Γ xyAB(t) = −Γ yxAB(t) ≡ iΓ−AB(t). (62)

It follows:∑
jj′

〈(SC(t)L)jν (SDL)j′µ〉χjj
′

AB(t) =

Γ+
CD(t)

{
2χ+

AB(t)(P3)νµ + χ
(3)
AB(t)(P1 + P2)νµ

}
− Γ−CD(t)

{
2χ−AB(t)(P3)νµ − χ(3)

AB(t)(P1 − P2)νµ
}

+ Γ
(3)
CD(t)

{
χ+
AB(t)(P1 + P2)νµ + χ−AB(t)(P1 − P2)νµ

}
;

(63)

∑
jj′

〈(SBL)j′µ(SA(t)L)jν 〉χjj
′

CD(t) =

Γ+
BA(−t)

{
2χ+

CD(t)(P3)νµ + χ
(3)
CD(t)(P1 + P2)νµ

}
+ Γ−BA(−t)

{
2χ−CD(t)(P3)νµ − χ(3)

CD(t)(P1 − P2)νµ
}

+ Γ
(3)
AB(−t)

{
χ+
CD(t)(P1 + P2)νµ + χ−AB(t)(P1 − P2)νµ

}
.

(64)

Several general conclusions are already possible concern-
ing the general structure of the Fourier-transformed χ

χk,k′ = (P1 + P2)χ+
k,k′ + (P1 − P2)χ−k,k′ + P3χ

(3)
k,k′ . (65)

In RPA χ(3) vanished and for χ± we obtained

χ+
k,k′ ∼ δk,k′ ;χ

−
k,k′ ∼ δk,k′−Q. (66)

Beyond RPA the full selfconsistency equations will main-
tain the property of equation (66) and furthermore χ(3),
now finite, will be

χ
(3)
k,k′ ∼ δk,k′ . (67)

This follows from equations (40, 57–59, 63, 64) from which
the general structure of Kk,k′ , (JR)k,k′ and the factorized
form of χ(4)

k,k′ can be extracted.

From equation (29) we can project out the factors of
(P1 +P2) and P3: we either have contributions containing
the diagonal elements of correlation functions (Γ νν) and
susceptibilities (χνν), which are ∼ δk,k′, or even powers of
correlation functions (Γ xy) and susceptibilities (χxy). Γ xy
and χxy being proportional to δk,k′−Q, the even powers
will give a translationally invariant quantity again.

Projecting out the factors of (P1 − P2) we obtain a
contribution from Kk,k′ ∼ δk,k′−Q; the other contribu-
tions contain odd powers of the correlation function Γ xy

or the offdiagonal part of the susceptibility χxy, which are
proportional to δk,k′−Q.

Using this general property equations (66, 67) we
define:

χk,k′ = (P1 + P2)χ+
k δk,k′ + (P1 − P2)χ−k δk,k′−Q

+ P3χ
(3)
k δk,k′ ; (68)

and similarly:

Γk,k′ = (P1 + P2)Γ+
k δk,k′ + (P1 − P2)Γ−k δk,k′−Q

+ P3Γ
(3)
k δk,k′ . (69)

The equal time correlation functions γ+, γ−, γ(3) are de-
fined equivalently (γ = Γ (t = 0)).

The different components of the susceptibility ten-
sor are obtained from equation (29) with the aid of
equations (31, 59, 64) for the factorized form of χ(4): we
obtain 3 coupled equations by projecting out the factors
of (P1 + P2), (P1 − P2), and P3: Fourier transformation
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yields:

ω2χ+
k = 2

∑
q

(γ+
q + γ(3)

q )(Jq − Jk−q)

+ 4
∑
q

{
(Γ+
q χ

(3)
k−q + Γ (3)

q χ+
k−q)Jq(Jq − Jk−q)

− (Γ̂+
q χ

(3)
k−q + Γ̂ (3)

q χ+
k−q)Jk−q(Jq − Jk−q)

}
;

(70)ω2χ−k = ωd+ 2i
∑
q

γ−q (Jq + Jk−q−Q)

+ 4
∑
q

{
Γ (3)
q χ−k−qJq(Jq − Jk−q−Q)

− Γ̂ (3)
q χ−k−qJk−q(Jq − Jk−q−Q)

+ Γ−q χ
(3)
k−qJq(Jq+Q − Jk−q)

− Γ̂−q χ
(3)
k−qJk−q(Jq+Q − Jk−q)

}
; (71)

ω2χ
(3)
k = 4

∑
q

γ+
q (Jq − Jk−q)

+ 8
∑
q

{
Γ+
q χ

+
k−qJq(Jq − Jk−q)

− Γ̂+
q χ

+
k−qJk−q(Jq − Jk−q)

− Γ−q χ−k−qJq(Jq−Q − Jk−q−Q)

+ Γ̂−q χ
−
k−qJk−q(Jq−Q − Jk−q−Q)

}
. (72)

In the preceding equations we use:

q ≡ (q, q0); k ≡ (k, ω);
∑
q

≡
∑
q

∫
dq0
2π
· (73)

For example: χk−q is an abbreviation for χk−q(ω − q0).
Furthermore we introduced:

Γ̂+
q (q0) ≡ Γ+

−q(−q0); (74)

Γ̂ (3)
q (q0) ≡ Γ (3)

−q(−q0); (75)

Γ̂−q (q0) ≡ −Γ−−q−Q(−q0). (76)

6 Longitudinal fluctuations

Equations (70–72) constitute a set of nonlinear selfcon-
sistency equations for the susceptibilities

χ+ = χxx = χyy

χ− = −iχxy = iχyx;
χ(3) = χzz,

and the correlation functions

Γ+ = Γ xx = Γ yy;
Γ− = −iΓ xy = iΓ yx,
Γ (3) = Γ zz.

Recall that correlation functions and susceptibilities
are connected via the fluctuation-dissipation theorem
(Eq. (35)).

In this paper we are not attempting to reach
full selfconsistency. Instead on the right hand side of
equations (70–72) we are going to use results obtained in
perturbation theory. This may be viewed as the beginning
of an iteration procedure.

We start with equation (72), which gives the longitu-
dinal dynamic susceptibility in terms of Γ± and χ±. In a
first step we use results for Γ± and χ± obtained in RPA
approximation.

For T = 0 and ω > 0 RPA according to
equations (52, 53) yields:

Γ+
k (ω) = πd

√
Ek+Q

Ek
δ(ω − εk); (77)

Γ−k (ω) = πdδ(ω − εk). (78)

Inserting the RPA results into the right hand side of equa-
tion (72) we obtain the spectral function χ(3)′′:

ω2χ
(3)′′
k (ω) =

− π2d2
∑
q

{(δ(ω − εq − εk−q)− δ(ω + εq + εk−q))}

{
Jq(Jq−Jk−q)

√
Eq+Q Ek−q+Q

EqEk−q
+Jq(Jq+Q−Jk−q+Q)

}
.

(79)

The result for χ(3)′′ constitutes a continuum, which
appears in addition to the sharp δ-functions obtained in
RPA for χ(+)′′. The sharp δ-functions of χ(+)′′ are the
usual single spin wave excitations. Perturbation theory,
which yielded equation (79), in low order then gives a
two spin wave continuum. Its general properties are:

i) the continuum starts at the single spin wave spectrum,
extending to higher energies;

ii) the width in energy depends on wavevector k; the max-
imum width is reached for k tending towards zero and
towards Q (the magnetic Bragg vector); the minimum
in width is reached for k tending towards Q/2;

iii) the strength of the continuum for a given k, i.e. the
integral over ω,

γ
(3)
k ∼

∫ ∞
0

dω
2π
χ

(3)′′
k (ω)

is maximum for k towards Q/2, where the width is
smallest, leading to reasonably sharp excitation in that
part of (k, ω) space. The strength γ

(3)
k vanishes for k

tending towards zero and Q, where the width in ω
is maximum, both effects combine to give negligible
contributions for k ≈ (0,Q). For k = 0 this is due
to the conservation law for the total spin, for k = Q
longitudinal fluctuations vanish due to the existence
of the (macroscopic) order parameter (the staggered
magnetization);

iv) concerning the frequency dependence of the contin-
uum: close to the spinwave energy εk the continuum
starts from zero, increasing towards higher frequen-
cies as (ω − εk)2. This is due to phase-space factors
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(we discuss 3 dimensions) in the integral over q in
equation (79), where an overall downward curvature
in the dispersion relation εk is assumed.

These general conclusions become rather obvious when we
adopt the simplest model for the exchange constants JAB,
retaining one nearest neighbor interaction J only. For this
simple case the expression in the second curly brackets of
equation (79) reduces to

Jq(Jq − Jk−q)

{√
(JQ + Jq)((JQ + Jk−q)
(JQ − Jq)(JQ − Jk−q))

− 1

}
. (80)

The prefactor of the curly bracket above vanishes for k→
0, the curly bracket itself vanishes for k→ Q.

Away from these special values the curly bracket be-
comes singular as |q|−1 or |k− q|−1 towards Q. In three
dimensions these singularities do not lead to any prob-
lems in the integration over q, due to small phase space.
The marginal dimension is two: at T = 0 (here we are
discussing quantum fluctuations only) the integral over q
still remains finite. The divergence of the integral in one
dimension signals the usual instability of long range order.

The longitudinal fluctuations will in turn change
the spectral function of transverse fluctuations. Pertur-
batively we may insert the result obtained in (79) into
equations (70, 71): this will yield a continuum (in addition
to the sharp δ-functions of Eq. (51)):

δχ
(+)′′
k (ω) = −4πd3

∑
q,q′

√
Eq+Q

Eq
Gq′,k−q(Jq − Jk−q)2

× 1
ω2 − ε2k

{δ(ω − εq − εq′ − εk−q−q′)

−δ(ω + εq + εq′ + εk−q−q′)} , (81)

where we have used

Gq,k = Jq(Jq − Jk−q)

√
Eq+QEk−q+Q

EqEk−q

+ Jq(Jq+Q − Jk−q+Q). (82)

Similarly we obtain:

δχ
(−)′′
k (ω) = −4πd3

∑
q,q′

(Jq − Jk−q)(Jq − Jk−q−Q)Gq′,q

× 1
ω2 − ε2k

{δ(ω − εq′ − εq−q′ − εk−q)

+δ(ω + εq′ + εq−q′ + εk−q)} . (83)

7 Discussion

In the preceding chapters selfconsistency equations were
derived and analyzed to describe the full dynamic suscep-
tibility tensor of quantum antiferromagnets. As a start-
ing point “complete” RPA was introduced, the addition

“complete” referring to the off-diagonal elements of the
susceptibility tensor, which had not been included in pre-
vious publications. The diagonal elements (of standard
and well-known form) in RPA contain obvious deficien-
cies: longitudinal quantum fluctuations are absent, and
transverse fluctuations are described by sharp δ-functions
in frequency ω only.

To remedy these deficiencies a nonlinear set of selfcon-
sistency equations for longitudinal and transverse quan-
tum fluctuations was obtained in Section 5. In this paper
full selfconsistency was not attempted, instead a pertur-
bation expansion beyond RPA was used. The main results
are as follows.

Longitudinal fluctuations consist of a continuum in en-
ergy starting at the single spin wave energy, extending to
higher energies. The transverse fluctuations, too, acquire
an additional continuum, above the single spin wave ener-
gies, the latter still being described by sharp δ-functions.
The question remains open, whether the sharp δ-functions
only result from finite order perturbation expansion be-
yond RPA (– where phase space arguments lead to the
conclusion that the continuum starts with zero weight at
the sharp spin wave energy –), whereas a full selfconsis-
tent solution might lead to peaks in frequency of finite
width. General symmetry considerations require that for
wavevector k in the vicinity of Q (the magnetic Bragg
vector) and zero well defined collective excitations exist:
around Q this will be the Goldstone mode, whose exis-
tence is required due to the broken continuous symmetry.
For the wavevector tending towards zero the vanishing
width is due to conservation of the total magnetization in
the Heisenberg model used. For general wavevector and
small spin (where 1/s expansion is questionable) however,
it cannot be excluded that a fully selfconsistent treat-
ment leads to peaks of finite width instead of the sharp
δ-functions.

A final remark concerning the range of applicability
of the approximation used to obtain the selfconsistency
equations in Section 5: the decoupling procedure should
be applicable in the vicinity of Q and zero: as pointed out
above in that region of k space the collective excitations
will dominate. For small spin, however, there is no valid
expansion parameter applicable to all of (k, ω) space.

I thank A.S. Iosselevich and E.I. Kats for discussions.
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